Statewide Cumulative Risk Screening

Minnesota Pollution Control Agency

Statewide Cumulative Risk Screening

- Model all point, area, and mobile sources in state
- Universal receptor grid with ~100 m resolution (whole state)
- ~100 air toxics (RAPIDS) + criteria
- Estimate total concentrations, inhalation risks, non-inhalation risks (individual and population)

Statewide Cumulative Risk Screening

- Use results to prioritize chemicals, source categories, sectors, facilities, high risk locations for further work
- Database will allow testing of policy choices
- Work with stakeholders to develop plans to reduce risks

System Architecture

Grid Node Definition

Point Source

Statewide Cumulative Risk Screening

Grid Node Definition

Minor Area Source

Grid Node Definition

Major Area Source

Statewide ADM Runs

- ✓ 8800 Point Sources
 - Vapor34 Gbytes
 - Particle 36 Gbytes
- 1400 Area Sources

■ Risk Runs (Expected) > 120 Gbytes

Issues

- Limitations of IRAP/HHRAP as tools for multimedia air toxics assessments
 - Long-range transport / revolatilization (subsequent movement in environment)
 - Bioaccumulation-related issues
- What can we do about mobile sources and other high risks?

The Twin Cities VOC/PM_{2.5} Personal Exposure Study

Funding Sources: EPA STAR Grants GR825241-01-0 and R827928-010

Gregory C. Pratt, Don Bock, Chun Yi Wu

Minnesota Pollution Control Agency, St. Paul

Ken Sexton, John Adgate

University of Minnesota, Minneapolis

Thomas Stock, Maria Morandi

University of Texas, Houston

Neighborhood

PM_{2.5} (FRM)
OVM
VOC Canister
N=3

Central Site

PM_{2.5} (FRM)
VOC Canister
N=2

3M Personal Organic Vapor Monitor (OVM)

Air Dispersion Modeling of VOCs

- Model = ISCST3 version 01001 (EPA regulatory model)
- Met data = 1999 MSP airport
- Modeled times = 58 48-hour periods corresponding to measurement periods
- Receptors = community monitoring sites (OVMs and canisters) and outside participant homes (OVMs)

Sources

- Point Sources large stationary sources inventoried individually (424 in metro)
- Mobile Sources cars, trucks, planes, trains, boats, construction equipment, farm equipment, off-road vehicles, lawn and garden equipment, etc. (apportioned to census tracts)
- Area Sources smaller stationary sources inventoried collectively (22 categories apportioned to census tracts)

Point Sources

- Emissions of 82 pollutants using RAPIDS
- Company review of emission estimates
- Source locations by GIS addressmatching + GPS
- Stack parameters averaged over all sources at a facility from (by priority):
 - 1 DELTA (state permitting system)
 - 2 Default OTAG values by SCC code
 - 3 Average OTAG values

Mobile Sources - On-Road and Non-Road

- Miles of each road category in each census tract calculated using GIS
- MnDOT traffic count data obtained (counts by county and road category)
- Used GIS to calculate VMT in census tract
- Emission Factors (per VMT) from RAPIDS (based on Mobile 5 model)
- Emissions assigned to census tract and modeled as an area source

Mobile Sources - Rail and Air

- RAPIDS rail emission were apportioned to census tracts based on the length of rail line in the tract
- Airport-related emissions from each airport in RAPIDS were apportioned to the census tract containing the airport

Area Source Categories - 1

Agricultural Pesticide	
Application	Not Done (no VOCs from study)
Architectural Surface	
Coatings	Population parsing
Asphalt Paving	Not Done (no VOCs from study)
Auto Body Refinishing	Population parsing
Chromium Electroplating	Not Done (no VOCs from study)
Consumer and Commercial	
Solvent Use	Population parsing
Dry Cleaning	Population parsing
Gasoline Marketing	Population parsing
Graphic Arts	Population parsing
Hospital Sterilizers	Population parsing
Human Cremation	Not Done (no VOCs from study)

Area Source Categories - 2

Industrial Surface Coating	Population parsing
Landfills	Assign to Census Tract
Marine Vessel Loading etc.	Not Done (only Duluth)
Prescribed Burning	Not Done (data not available)
Public Owned Treatment Works	Done as Point Sources
Residential Fuel Combustion	Population parsing
Residential Wood Combustion	Population parsing
Solvent Cleaning	Population parsing
Structure Fires	Population parsing
Traffic Markings	Lane Miles
Wild Fires	Area

Tetrachloroethylene Emissions

Pollutant	Source	Emissions	Modeled Concentrations (%)					
	Category	(%)	BCK	ESP	PHI			
	Point	1	1	0	0			
Be nze ne	Are a	26	12	13	9			
	Mo b ile	73	87	86	91			
Chlo ro fo rm	Point	26	6	6	4			
	Are a	74	94	94	96			
	Mo b ile	0	0	0	0			
E thylbe nze ne	Point	5	4	4	6			
	Are a	10	4	5	2			
	Mo b ile	85	92	91	92			
Dic hlo ro me tha ne	Point	21	38	39	39			
	Are a	79	62	61	61			
	Mo b ile	0	0	0	0			
	Point	55	10	10	9			
S ty re ne	Are a	1	1	1	0			

Pollutant	Source	Emissions	Modeled Concentrations (%)					
	Category	(%)	BCK	ESP	PHI			
Te tra c ho ro e thy le ne	Point	14	5	3	3			
	Are a	86	95	97	97			
	Mo b ile	0	0	0	0			
To lue ne	Point	5	5	16	2			
	Are a	37	39	37	41			
	Mo b ile	58	55	46	57			
Tric hlo ro e thyle ne	Point	66	56	71	90			
	Are a	34	44	29	10			
	Mo b ile	0	0	0	0			
Xyle ne s	Point	7	6	5	5			
	Are a	34	40	44	44			
	Mo b ile	59	54	51	51			

Monitored Styrene (log ug/m3)

Regressions between modeled and monitored concentrations

Pollutant	Canis te rs		Outdoor OVMs		Indoor OVMs			Personal OVMs				
	BCK	ESP	PHI	BCK	ESP	PHI	BCK	ESP	PHI	BCK	ESP	PHI
Benzene	0.38	0.43	0.16	0.44	0.37	0.08	0.04	0.09	-0.01	0.06	0.05	-0.01
Carbon Tetrachloride	-0.02	-0.01	-0.01	0.01	-0.01	-0.01	0.00	-0.01	0.01	-0.01	0.00	-0.01
Chloroform	-0.03	0.02	0.36	-0.03	-0.01	-0.02	-0.01	-0.01	0.00	0.03	-0.01	-0.01
Ethylbenzene	0.32	0.40	0.17	0.42	0.32	0.04	0.01	0.03	-0.01	0.08	0.02	-0.01
Methylene Chloride	-0.02	0.03	0.19	-0.01	-0.02	0.04	0.01	-0.01	0.02	-0.01	-0.01	0.00
Styrene	-0.02	0.13	0.12	0.01	0.12	-0.02	0.04	-0.01	-0.01	0.03	0.00	-0.01
Tetrachloroethylene	n/a	n/a	n/a	-0.01	0.14	0.01	0.00	-0.01	-0.01	-0.01	-0.01	-0.01
Toluene	0.50	0.46	0.19	-0.02	0.08	-0.01	0.00	0.00	-0.01	0.07	-0.01	0.02
Trichloroethylene	-0.02	-0.02	0.00	0.08	0.00	0.00	-0.01	0.00	-0.01	-0.01	0.00	0.00
Xylenes	0.36	0.39	0.19	0.51	0.34	0.09	0.01	0.05	-0.01	0.07	0.02	-0.01
		p less than or equal to 0.05 and $R2 > 0.1$										
		p less than or equal to 0.001 and $R2 > 0.2$										

Conclusions

- Generally for measured PM_{2.5} & VOCs:
 Personal > Indoor > Outdoor
- High cross-sectional and longitudinal variability
- Outdoor not a good predictor of personal indoor better, but not great >> implies microenvironments are important
- OVMs compared well with canisters for most VOCs in this study – poorly for some VOCs

Conclusions

- ISCST model predictions (matched in time and space) within factor of 2 on average for most VOCs (better unmatched)
- Model performed better for mobile source pollutants with higher concentrations
- ISCST performed best in BCK (lowest emissions) and poorest in PHI (highest emissions)
- Model performed best unmatched in time and space